
Datamover 15.06 (1)

Datamover 15.06

Table of Contents
Introduction and workflow ... 2	

Installation ... 3	

Datamover as a Windows Service .. 4	

Configuration .. 5	

Configuration options ... 6	

Integration into system init process ... 8	

Monitoring script for Datamover ... 10	

Robustness with respect to program restarts ... 10	

Robustness with respect to clock mismatch .. 11	

Copy engine .. 11	

Dealing with failures when retrying does not help 12	

Notifications ... 12	

"High water" mark protection against disk capacity being exceeded 12	

Ssh tunneling mode .. 13	

Fix the SSH credentials for connection to openBIS Data Store Server (for Windows) 14	

Restricted remote target environment using rssh .. 15	

Hybrid rsync server / ssh tunneling mode .. 16	

A simple rsync server setup .. 16	

Datamover setup without authorization .. 17	

A rsync server setup with basic authorization .. 17	

Datamover setup with authorization ... 18	

Special features .. 18	

Prefixing incoming data sets .. 18	

Monitoring Data Transfer .. 18	

Handshake (Data completion check) .. 18	

Local File Cleansing .. 19	

Manual Intervention Handling .. 20	

Local Data Transformation .. 20	

Currently available transformators ... 20	

Script Based Transformer	
 ..	
 20	

TIFF Compressor	
 ...	
 21	

Extra local copy ... 22	

Obtaining status .. 22	

Obtaining outgoing target ... 23	

Shutdown mode .. 23	

Timeouts in checking for last modification time of incoming target 23	

Datamover 15.06 (2)

Introduction and workflow
 Words written in monospace are configuration directives.

Datamover is a program that takes care of moving (typically large to huge) file-
based data produced by a data producer (e.g. a measurement device) to a
(remote) central storage. Running in the background, it checks for new, incoming
data periodically. Since the central storage is remote (i.e. requires a network to be
in good working order), the copy process can run into trouble, that is: get
terminated or stuck. Datamover will take care of these problems to the extent
possible and keep you informed if the problem persists.

Datamover utilizes 3 "targets" (where "target" denotes a directory on this or a
remote host):

1. The incoming-target can be either local or on a remote file system where
the data producer dumps its data. If it is local, it needs to be on the same file
system as buffer-dir.

2. The buffer-dir is a directory on the local file system of the host that runs
Datamover where data from incoming-target get moved to when they are
found to be ready for moving.

3. The outgoing-target is supposed to be always on the remote file system
where the data eventually get moved to. Only data from the buffer-dir are
moved to the outgoing-target and only data that have been copied over
successfully are then removed from buffer-dir.

The workflow is as follows:

1. The data producer writes data to incoming-target.
2. The Mover of Incoming Data monitors incoming-target for items (files or

directories) that have not seen any updates in a given period of time (the
quiet-period), are moved from incoming-target to buffer-dir. This can
either be an operation moving one inode (if treat-incoming-as-remote is
false) or a copy / delete cycle employing a copy engine. Optionally a script
can be specified that is able to check by any custom criterion that may apply
to your incoming-target whether the item is ready to be moved (see section
Handshake (Data completion check) for details).

1. The Local Processor does all local operations on data in buffer-dir, like
cleansing, data transformation or making an extra copy. It uses internal
directory structure inside buffer-dir to do that.

2. The Final Destination Mover copies files or directories processed by Local
Processor to outgoing-target, using a copy engine.

3. If an item has been successfully copied to the outgoing-target, it will be
removed from the buffer-dir. A mark file
.MARKER_is_finished_<itemname> will be created in the outgoing-target in
order to signal that the copy process has been successfully finished.

4. If the copy operation failed, the Final Destination Mover sleeps for a while
(the failure-interval) and retries the operation. The operation will be

Datamover 15.06 (3)

retried at a maximum max-retries times.

If the incoming-target directory does not reside on the same machine as the
buffer-dir directory, you need to set treat-incoming-as-remote option. This will
ensure that a regular data copy / delete cycle is used to move data from the
incoming directory to the buffer directory instead of a simple in-filesystem move. It
should be noted that one important reason for buffering is to avoid on overflow on
the disk capacity of the data producer, keeping the data producer from getting
stuck. Thus a reasonable setup needs to make sure that if data producer and
Datamover run on different hosts, the network connection between them is very
reliable, preferably just a cross-over cable or a room network.

Installation
Datamover 13.07 has been tested on:

• Redhat Enterprise Linux 6.3 (x64)

 SELinux
We have seen problems with Redhat Enterprise Linux 5 when SELinux
was enabled: rsync was not able to perform copy operations but
terminated with error messages about not being able to stat paths.
We recommend you disable SELinux on hosts that are supposed to
run Datamover. To check whether SELinux is disabled, use the
getenforce command.

• Apple MacOS 10.6 (x64)
• Microsoft Windows 7 Professional (x64)

Earlier versions of the software have been tested on:

• Redhat Enterprise Linux 5.5 and 5.2 (x64), openSUSE Linux 10.2 and 10.3
(x86)

• Sun OpenSolaris 2008.05 (x64)
• Apple MacOS 10.5 (x64) and 10.4 (x86)
• FreeBSD 6.2-STABLE (x86)
• Microsoft Windows XP Professional (x86)

Actually it should run on any Posix compliant operating system that has a Java
Runtime Environment 5.0 or later and rsync, ssh and ln binaries on it.

As a pre-requisite you need to have installed a Java Runtime Environment 5.0 or
later (look for example at the Oracle website). Note: In the following we have to
distinguish between Unix and Windows in some places. Linux and MacOS X qualify
as Unix.

• Download the distribution zip file (for link see below in the download section)
and unzip it at a place convenient to you.

• Look at etc/log.xml and see whether the email settings suit your needs (it
will work out of the box only on Unix machines with running SMTP server
where email to root is forwarded to an admin account). Try it out by calling
datamover.sh test-notify.

• Edit the etc/service.properties file and put in parameters that work for
you. You can also specify the parameters in the command line. Note that you

Datamover 15.06 (4)

probably have to change the incoming-target, the buffer-dir and the
outgoing-target settings since the default values are supposed to work only
for testing and demonstration. It is safe to leave the other settings
unchanged.

• Have a look at etc/datamover.conf and see whether that fits your
configuration.

• Start the Datamover by calling either datamover.sh (Unix) or datamover.bat
(Windows). On Unix, the program detaches from the console, on Windows,
you will have to keep the command shell window open to keep the application
running.

Datamover as a Windows Service
On Windows machines Datamover can be installed as a Windows Service with the
help of Java Service Launcher (http://jslwin.sourceforge.net). The launcher needs
the following initialization file (jsl64.ini). It assumes that the Datamover
distribution has been unzipped in C:\Utilities\Datamover_JSL:

[defines]

[service]
appname = Datamover
servicename = Datamover
displayname = Datamover
servicedescription = Datamover as Windows Service

;Size of internal buffer for string handling
stringbuffer = 16000

;service start type
starttype=auto

;load ordering group
loadordergroup=someorder

;Allocate a console and register a console event handler to catch shutdown events.
useconsolehandler=false

;Call <stopclass>.<stopmethod> through JNI so stop the JVM.
stopclass=java/lang/System
stopmethod=exit
stopsignature=(I)V

;User to run the windows service
account=.\openbis

[java]

;Path to the Java Runtime Environment
;This option is needed if the default path should not be used
;jrepath=C:\Utilities\jre

;Type of jvm to be used (client on 32-bit, server on 64-bit).
jvmtype=server

;working directory
wrkdir=C:\Utilities\Datamover_JSL\datamover

;The java command line
;For Windows XP the command line parameter '-Xrs' has to be added: cmdline = -Xrs -cp lib\datamover.jar...
cmdline = -cp lib\datamover.jar;lib\log4j.jar;lib\cisd-base.jar;lib\cisd-args4j.jar;lib\commons-
lang.jar;lib\commons-io.jar;lib\activation.jar;lib\mail.jar ch.systemsx.cisd.datamover.Main --rsync-
executable=bin\win\rsync.exe --ssh-executable=bin\win\ssh.exe --ln-executable=bin\win\ln.exe

To setup Datamover as a Windows Server you have to do the following steps:

1. Create C:\Utilities\Datamover_JSL and unzip Datamover distribution

Datamover 15.06 (5)

there. It should create the folder C:\Utilities\Datamover_JSL\datamover.
2. Move jsl_static64.exe to C:\Utilities\Datamover_JSL.
3. Create jsl64.ini in C:\Utilities\Datamover_JSL.
4. Create a user openbis as an administrator or change the line account

in jsl64.ini to a user with administrator rights.
5. Run the console (i.e. cmd) as an administrator (press Windows key, enter

'cmd', right-click on found cmd and choose 'Run as administrator').
6. Change to C:\Utilities\Datamover_JSL.
7. Run jsl_static64.exe -install

C:\Utilities\Datamover_JSL\jsl64.ini. A success message 'Datamover
installed as a Windows service' should appear.

8. Run Computer Management tool mmc.exe (or click the Windows key, type
'services' and open found program).

9. Double click on 'Datamover' and choose tab 'Log On' from the popped up
dialog.

10. Enter the account password and click OK button.
11. Start the Datamover services.

Next time the system is booted Datamover is automatically started up as a
Windows Service.

 Datamover can be removed from the Windows Services
by running in an administrator console: sc delete
Datamover.

For testing and debugging you can use the debug option. This simulates the
installation and gives useful feedback:

jsl_static{64}.exe –debug jsl_static{64}.ini

Configuration
All settings of the Datamover can be specified either on the command line (for a list
of all options, see below) or by a line in the file service.properties, which is
located in the etc subdirectory of the distribution. Each line of the configuration file
should have the "name = value" format, e.g. "outgoing-target =
data/destination". If the same option is specified in two places, the setting on
the command line will always take precedence.

 Windows users should use this format for paths in the service.properties:

buffer-dir = C:\\data\\buffer

There are two environment configurations that cannot be specified this way, which
are JAVA_HOME, the home directory of the JRE, and JAVA_OPTS, the additional

Datamover 15.06 (6)

parameters provided to the JRE. For Unix/Linux these can be specified in
etc/datamover.conf. For Windows, they have to be added to datamover.bat
directly.

Additional parameters of the optional data transformation can be specified only in
service.properties file.

Configuration options
Options in service.properties

Incoming target

The directory where the data producer writes data items to.
Syntax: incoming-target = [[<user-name>@]<host-name>:[<rsync-module>:]]<dir-path>
* If you set a <host-name> and a <dir-path> it will be assumed that the target is a directory on a
remote host that has an accessible ssh server and that this host is allowed to connect to.
* If you set a <host-name>, an <rsync-module> and a <dir-path>, it will be assumed that that the
target is a directory on a remote host that has an accessible ssh server and an accessible rsync
server that this host is allowed to connect to.
Note that setting the <rsync-module> still required an ssh connections for some operations, so
setting this parameter just means that the bulk transfer is using the rsync server.
incoming-target = data/incoming

The string prepended to incoming data sets. '%t' will be replaced with the current time.
prefix-for-incoming = %t_

If set to true, the initial test for accessibility of the incoming store will be skipped.
skip-accessibility-test-on-incoming = false

When set to <true>, then the incoming directory will be treated as a mounted remote directory.
This is only relevant when the incoming-target does not contain a <host-name> (which makes it
explicit that the incoming target is remote).
#treat-incoming-as-remote = <true or false>

Buffer

The local directory to store the paths to be transfered temporarily
buffer-dir = data/buffer

If free disk space goes below value defined here, a notification email will be sent.
Value must be specified in kilobytes (1048576 = 1024 * 1024 = 1GB).
Comment this out or set it to a negative value in order to disable the high-water mark feature
for the buffer.
buffer-dir-highwater-mark = 1048576

Outgoing target

The remote target to move the data to.
Syntax: outgoing-target = [[<user-name>@]<host-name>:[<rsync-module>:]]<dir-path>
* If you set a <host-name> and a <dir-path> it will be assumed that the target is a directory on a
remote host that has an accessible ssh server and that this host is allowed to connect to.
* If you set a <host-name>, an <rsync-module> and a <dir-path>, it will be assumed that that the
target is a directory on a remote host that has an accessible ssh server and an accessible rsync
server that this host is allowed to connect to.
Note that setting the <rsync-module> still required an ssh connections for some operations, so
setting this parameter just means that the bulk transfer is using the rsync server.
outgoing-target = data/outgoing

If free disk space goes below value defined here, a notification email will be sent.
Value must be specified in kilobytes (1048576 = 1024 * 1024 = 1GB).
Comment this out or set it to a negative value in order to disable the high-water mark feature
for the outgoing directory.
outgoing-target-highwater-mark = 1048576

If set to true, the initial test for accessibility of the outgoing store will be skipped.
skip-accessibility-test-on-outgoing = false

Datamover 15.06 (7)

Optional feature: handshake on incoming data

Path to the script file that will be executed to check whether an incoming data item is already
complete or not.
#data-completed-script = <path to script>

Timeout (in seconds) for the data-completed-script. If the script exceeds this timeout, it will
be killed and an error is reported.
#data-completed-script-timeout = <timeout in seconds>

Optional feature: manual intervention handling

The local directory to store paths that need manual intervention (mandatory, but only used when
manual-intervention-regex is set
manual-intervention-dir = data/manual_intervention

Regular expression of paths that need manual intervention, default prefix-for-incoming
corresponds to regex '[0-9]{14}_'
Set this to enable manual intervention checking.
#manual-intervention-regex = <regex of paths that need manual intervention, default prefix-for-incoming
corresponds to '[0-9]{14}_'>

Optional feature: The script which should be called when a file/directory has been
successfully transfered to the outgoing directory.
The script will be called with one parameter - the transfered item name.

#transfer-finished-executable = <path to the script which will be invoked on successful transfer
completion>

Optional feature: data cleansing

The regular expression of paths that should be removed before moving an item to outgoing
#cleansing-regex = <regex>

Optional feature: creation of an extra (immutable) copy on the Datamover server for processing

The (local) directory in which an extra copy of each incoming data item will be created.
The copy needs to be treated immutable, i.e. it may be read and deleted, but not changed!
#extra-copy-dir = <path>

Optional feature: data transformation

The name of the class (together with the list of packages this class belongs to)
with implementation of data transformation that will be performed in the buffer.
#transformator.class = <class name>

Additional transformator properties:
#transformator.<property 1> = <property value>
#transformator.<property 2> = <property value>
#...

Timing parameters

The time period (in seconds) that an incoming data item needs to be 'quiet' (i.e. no write
access is sensed on it) before moving it to the buffer will start.
#quiet-period = <time period in seconds>

Time interval (in seconds) between two checks for incoming data.
#check-interval = <time interval in seconds>

Time interval (in seconds) between two checks on the buffer directory.
(You will probably not want to change this.)
#check-interval-internal = <time interval in seconds>

Time period (in seconds) without any write activity on the target before a copy process is
considered stalled.
#inactivity-period = <time period before a copy process is considered stalled in seconds>

Time period (in seconds) to wait after a failure has occurred before the operation is re-tried.
#failure-interval = <time period in seconds>

Datamover 15.06 (8)

Maximal number of re-tries of a failed operation before giving up on it.
#max-retries = <maximal number of retries>

Timeout (in seconds) for a remote connection to be established. Default: 100 sec
#remote-connection-timeout = <timeout in seconds>

Timeout (in seconds) for a remote operations to complete. Default: 100 sec
#remote-operation-timeout = <timeout in seconds>

Explicitly set executables (leave blank to let Datamover find them itself)

The path to the rsync executable. Only required if the first occurrence of rsync in the PATH is
not what you want to use for the Datamover.
#rsync-executable = <path to rsync>

If set to true, rsync is called in such a way that target files that already exist are
overwritten rather than appended to.
#rsync-overwrite = <true or false, default is false>

The basic parameters passed to rsync. If not set here, these default to "--archive, --delete-before, --
inplace"

Note: If you configure this property, the rsync command line will be composed of the parameters here
and those set in extra-rsync-params. Configuration parameter rsync-overwrite will be ignored.
It isn't recommended to use this parameter. Use it only if special rsync command line options are
needed.
#basic-rsync-params = <coma-separated list of additional params, e.g.--archive, --delete-before, --
inplace>

May be used to explicitely add parameters to the rsync command line.
#extra-rsync-params = <coma-separated list of additional params, e.g. –progress, --no-owner, --no-group>

The path to the rsync executable on the incoming host.
Only used when ssh tunneling mode is used for the incoming target.
Only required if the first occurrence of rsync in the PATH on the incoming host is not what you
want to use for the Datamover.
#incoming-host-rsync-executable = <path to rsync>

The path to the rsync executable on the outgoing host.
Only used when ssh tunneling mode is used for the outgoing target.
Only required if the first occurrence of rsync in the PATH on the outgoing host is not what you
want to use for the Datamover.
#outgoing-host-rsync-executable = <path to rsync>

Path to the 'lastchanged' executable of Datamover on the remote incoming host
Specify only when using an ssh tunnel or an rsync server for copying the incoming data.
#incoming-host-lastchanged-executable = <path of 'lastchanged' executable>

Path to the GNU find executable on the remote incoming host.
Specify only when using an ssh tunnel or an rsync server for copying the incoming data.
#incoming-host-find-executable = <path of 'find' executable>

Path to the 'lastchanged' executable of Datamover on the remote outgoing host
Specify only when using an ssh tunnel or an rsync server for copying the outgoing data.
#outgoing-host-lastchanged-executable = <path of 'lastchanged' executable>

Path to the GNU find executable on the remote outgoing host.
Specify only when using an ssh tunnel or an rsync server for copying the outgoing data.
#outgoing-host-find-executable = <path of 'find' executable>

The path to the ln executable (for hard link creation). Only required if the first occurrence of
ln in the PATH is not what you want to Datamover to use.
#ln-executable = <path to ln>

The path to the ssh executable (for SSH tunnels). Only required if the first occurrence of
ssh in the PATH is not what you want to Datamover to use.
#ssh-executable = <path to ssh>

Integration into system init process
In order to integrate Datamover into the startup process of the Linux operating
system, put these files into their proper location:

/etc/init.d/datamover:

Datamover 15.06 (9)

#!/bin/sh

chkconfig: 35 90 19
description: Starts and stops the Datamover Service

Source function library.
if [-f /etc/init.d/functions] ; then
 . /etc/init.d/functions
elif [-f /etc/rc.d/init.d/functions] ; then
 . /etc/rc.d/init.d/functions
else
 exit 0
fi

Avoid using root's TMPDIR
unset TMPDIR

if [-f /etc/sysconfig/datamover]; then
 . /etc/sysconfig/datamover
fi

Check that networking is up.
. /etc/sysconfig/network

[${NETWORKING} = "no"] && exit 0

RETVAL=0

start() {
 KIND="Datamover"
 echo -n $"Starting $KIND services: "
 su - -c "cd $DM_HOME/;./datamover.sh start" $DM_USER
 RETVAL=$?
 return $RETVAL
}

stop() {
 KIND="Datamover"
 echo -n $"Shutting down $KIND services: "
 su - -c "cd $DM_HOME/;./datamover.sh stop" $DM_USER
 RETVAL=$?
 echo
 return $RETVAL
}

status() {
 KIND="Datamover"
 echo -n $"Status of $KIND services: "
 su - -c "cd $DM_HOME/;./datamover.sh mstatus" $DM_USER
 RETVAL=$?
 echo
 return $RETVAL
}

restart() {
 stop
 start
}

Non-root users stop here
[`id -u` = 0] || exit 0

case "$1" in
 start)
 start
 ;;
 stop)
 stop
 ;;
 restart)
 restart
 ;;
 status)
 status
 ;;
 *)
 echo $"Usage: $0 {start|stop|restart|status}"
 exit 1
esac

exit $?

Datamover 15.06 (10)

/etc/sysconfig/datamover:

DM_USER="datamover"
export DM_USER

DM_HOME="/local0/$DM_USER"
export DM_HOME

PATH=~/bin:$PATH
export PATH

where the second file needs to be adapted to your local system.

Monitoring script for Datamover
This script (~openbis/bin/check_datamover.sh) can be used as a crontab entry:

#! /bin/bash

DATAMOVER_HOST=datamover

RV=`/usr/bin/ssh -oConnectTimeout=15 $DATAMOVER_HOST 'service datamover status > /dev/null; echo $?' 2>
/dev/null`

SSH_RV=$?

export MAILX="/bin/mail"
export MAIL_LIST="`cat ~/.forward`"

if [$SSH_RV -ne 0]; then
 echo -e "Unable to connect to Datamover host via SSH ... :-(" | $MAILX -s "Datamover for <SERVER>:
DOWN!" $MAIL_LIST
 exit 1
fi

if [$RV -ne 0]; then
 if [$RV -eq 1]; then
 echo -e "Datamover program is in state ERROR ... :-(" | $MAILX -s "Datamover for <SERVER>: ERROR!"
$MAIL_LIST
 else
 echo -e "Datamover program is DOWN ... :-(" | $MAILX -s "Datamover for <SERVER>: DOWN!" $MAIL_LIST
 fi
 exit 1
fi

Robustness with respect to program
restarts
The directory-based communication has been preferred over a memory-based one,
because it is more robust with respect to restarting the program. This is because
with the directory-based approach all state is kept on the file system instead in
memory. Thus restarting the program, or even the server, will restart an operation
where it was terminated. Special care was taken to ensure, that after restarting the
program it recovers properly, finishing all operations that were stopped in the
middle. This is called a recovery cycle which is run automatically after program
start.

In case an environment triggered exceptional condition occurs during the

Datamover 15.06 (11)

processing, a recovery cycle can be triggered without a restart by calling
datamover.sh recover.

Robustness with respect to clock mismatch
When the incoming-target is located on a different host than the Datamover,
there is the potential problem that the clocks of the two hosts may be not
synchronized. In order to avoid this problem, Datamover is using an algorithm that
ensures that this condition does not lead to premature transfer and deletion
processes (which might even lead to data loss). To this end, the Datamover never
compares times from the data producer and from the Datamover directly. Instead,
the last modification time of an "item" (which may be a file or a directory) is
compared to the last modification time of the same item at an earlier time, where
the time difference that decides on when to compare last modification times is
determined from the Datamover clock.

The same robust mechanism is used also for ssh tunneling mode and hybrid rsync
server / ssh tunneling mode (see below). There is no requirement of clocks
synchronization between the Datamover machine and the remote machine from
which or to which data are moved.

Copy engine
The Datamover uses rsync as its copy engine. For Microsoft Windows, version
3.1.1 from Cygwin (Version 2.0.0 32bit) is packaged. For Unix/Linux, rsync needs
to be installed in the system. The system requires version 2.6.0 or newer, but we
recommend version 2.6.7 or newer. Various versions from 2.6.5 to 3.0.7 have
been given a cursory test. However, most experience has been gathered with
versions 2.6.8 and 3.0.6. Note that the executable of rsync to use can be
specified using the rsync-executable configuration parameter.

 Append vs. Overwrite

Note that by default Datamover uses the append mode for rsync v2.6.7 or
newer. In this mode rsync first tries to append to an already existing file. If the
assumption turns out to be wrong that the already existing part of the file on
the destination was identical to the source, this will be detected during the final
checksum calculation and the whole file will be retransmitted.

This behavior can be changed by providing the option rsync-overwrite either on
the command line or in service.properties. If specified, an already existing file
will be deleted and re-transmitted anew. This is the only mode available for
rsync v2.6.6 or older.

Datamover 15.06 (12)

Dealing with failures when retrying does not
help
When an item can not be successfully copied to the outgoing even after the
maximal number of retries permitted, it's name will be put in the .faulty_paths
file and a notification entry will be logged (which, depending on the log
configuration, will be sent to an administrator per email).

This situation requires manual intervention by an administrator. When the problem
is fixed, removing an item from the .faulty_paths file (or deleting the file
altogether) will make the Datamover retry copying the item(s) to the remote site.

Notifications
All log messages of category NOTIFY are meant to be sent out to an administrator
in one way or another, because they need manual intervention due to a failure that
doesn't go away by retrying the operation. The notification is configured in the file
etc/log.xml by means of the EMAIL log4j appender. By default, the mail will be
sent out to root@localhost, which is fine if you are on a Unix/Linux system with
running SMTP server bound to port 25 and someone regularly looking at the email
of root or if the email of root is forwarded to a regular user who acts as system
administrator of the box. Otherwise (especially if it is a Windows box), the SMTP
settings in etc/log.xml need to be adapted to your environment. It is
recommended that you check the settings by triggering a NOTIFY log message. This
can be done by calling datamover.sh test-notify. Note that this will trigger a
NOTIFY log message of level INFO, so you must not change the log level above INFO
in etc/log.xml in order to obtain an email.

"High water" mark protection against disk
capacity being exceeded
For the buffer-dir resp. outgoing-target, it is possible to specify a so called
high-water mark. A high-water mark is the lowest level of free disk space reached
by a given directory. Once the high-water mark is reached (the available free disk
space lies below the specified high-water mark), the administrator is notified via
email and Datamover stops moving files, waiting until sufficient disk space is
available again (in this case the administrator is notified as well).

The high-water mark is specified in kilobytes. Negative values are not considered,
meaning that the system is not watching free disk space.

Example for specifying a high-water mark in the service.properties:

buffer-dir = targets/buffer
Value is specified in kilobytes (1048576 = 1024 * 1024 = 1GB).
buffer-dir-highwater-mark = 1048576
outgoing-target = targets/outgoing
outgoing-target-highwater-mark = 1048576

Datamover 15.06 (13)

Ssh tunneling mode
The incoming and outgoing directories can be accessed by the Datamover via an
ssh tunnel (using the according mechanism of rsync). This can be useful when
using remote shares (NFS or CIFS) is not an option, e.g. when moving data via the
internet. You can switch on ssh tunneling mode by specifying the host name of the
ssh server in the outgoing-target just before the (remote) directory using ':' as
separator. The same applies to the incoming-target. Note that it is possible to
move data from one remote machine to the other using ssh tunneling for both
ends. However, this may not be optimal with regard to performance.

By default, the Datamover will search in the PATH for ssh. If you need to use a
special version of SSH you can provide the path of the executable via ssh-
executable (as with rsync-executable for rsync). For Windows, a version of SSH
from Cygwin is packaged with the Datamover.

It is important to note that the authentication needs to work without password or
passphrase. This means that authorization needs to be done using an unencrypted
private key or using mechanisms like OpenSSH's ssh-agent or Gentoo's keychain.
For OpenSSH the simplest way is to create an SSH key pair without a passphrase,
add the public key to the ~/.ssh/authorized_keys file of the ssh server and write
an appropriate section in the ssh client's (that is the machine running the
Datamover) ~/.ssh/config file that makes ssh use this key when talking to the
ssh server hosting the outgoing target. Here is an example of an absolute minimum
config file:

Host <host name pattern>
 HostName <host name or IP address>
Port <SSH port if not 22>
 IdentityFile <path to SSH key pair>

If the SSH server is using the default port 22 it should be specified in the config file.

In the default setup, it is required that the machine accessed through ssh provides:

• The bash shell
• The df Unix utility
• Only for an incoming store: The rm Unix utility
• Either the lastchanged utility
• Or the combination of the following tools:

• The GNU version of find, which is part of the GNU findutils. By
default it is checked if the find executable is accessible on the remote
machine as either find or gfind. Be careful, because the command
executed through the ssh tunnel does not have the usual PATH variable
of the remote machine set. Instead it sees the PATH configured by ssh.
In case the find executable can not be found automatically, the path
can be configured explicitly using the Datamover incoming-host-find-
executable or outgoing-host-find-executable configuration options.

• The Unix sort utility
• The Unix head utility

Datamover 15.06 (14)

If you configure skip-accessibility-test-on-xxx = true, (xxx: incoming or
outgoing) then you must configure the remote path to either lastchanged or find.

 The lastchanged utility
The C source code of the lastchanged binary can be found in the Datamover
distribution in datamover/src. It has been tested on Linux, Solaris and Mac OS
X, but should work on any Posix compliant system using a C99 compatible C
compiler. For the most common platforms, you will find the binaries in
bin/lastchanged of the distribution.
It needs to be available on the remote host that you want to use as either
incoming or outgoing target with Datamover in an ssh tunneling mode. If you
need it on a platform where the binary is not available, compile it on the target
host with a command similar to

gcc -O3 -Wall lastchanged.c -o lastchanged

and put it into the path of the remote user that Datamover connects as, e.g.
/usr/bin.

 Establishing an SSH tunnel from a Windows client
As Datamover uses OpenSSH also on Windows, you need to have the private
SSH key of the tunnel in OpenSSH format also on the Windows client machine.
The private key needs to be copied into the sub-directory
bin/home/<username>/.ssh/id_rsa relative to the Datamover installation
directory. The first time you run datamover.bat, this directory will be created
for you automatically if it doesn't exist. As a second requirement, you will need
an appropriate entry for the target host in
home/<username>/.ssh/known_hosts. The simplest way to create this entry is
by running "bin\win\ssh.exe user@host" from cmd.exe in the Datamover
installation directory. This will also allow you to check whether your SSH key
works: If you can get into the target machine without you need to type
anything, then you should be set to use the tunnel with Datamover.

Fix the SSH credentials for connection to openBIS Data
Store Server (for Windows)

1. Copy and rename the ssh folder: Create the folders (please mind the dot!):
<datamover-jsl-dir>/datamover/bin/home/openbis/.ssh

2. Add the cryptographics ssh private key: The folder <datamover-jsl-
dir>/datamover/bin/home/openbis must have owner openbis and
permissions equivalent to 700. You do not need cygwin, simply follow the
following recipe (if it does not work, start by moving the files config, id_rsa
and known_hosts into the .ssh folder).

3. Set the correct ownership and permission on the openbis home folder:
Open up the properties on the folder <datamover-jsl-
dir>/datamover/bin/home/openbis (that is, right-click on the folder and
choose Properties):

Datamover 15.06 (15)

1. Select tab Security|Advanced|Owner and click on Edit.

2. Choose the local user openbis.

3. Tick Replace Owner on subcontainers and objects.

4. Click on Ok.

5. Select tab Security|Advanced|Permissions and click on Change
Permissions.

6. Select Add, enter openbis and click Check Names (since openbis is a
local user, you can press Cancel on the network login dialog and then
choose the local machine).

7. Set the permissions to Full Control (make sure that the Apply To drop-
down menu is on This folder, subfolders and files).

8. Click Ok to go back to the Advanced Security settings (which should
have one entry now), click Ok (which will change the permissions) and
Ok all the way out.

9. Repeat the permission steps for user localadmin.

Notice, that these steps will work correctly on Windows XP 32 bit. You
might have to adapt some of the steps slightly in newer versions of
Windows.

4. Try opening a secure connection to the remote server:

a. Start the Windows Command Tool or Powershell as user openbis

b. Change to <datamover-jsl-dir>/datamover

c. Type: .\bin\win\ssh.exe <host>

If everything is set up correctly, you should log in successfully to <host>.

Security consideration
Prevent all access to <datamover-jsl-dir> for all users but localadmin and
openbis.

Restricted remote target environment using rssh

It is possible to use Datamover in a restricted target environment which only allows
download or upload of data with Datamover, but no shell access using the utility
rssh. To make rssh work with Datamover, a patch is needed that can be
downloaded from the Datamover download page.

Datamover 15.06 (16)

On the server side, rssh needs to be used as the shell of the remote user that
Datamover logs in as and the rssh configuration file (usually /etc/rssh.conf)
needs to contain the line

allowdmover

The Datamover configuration service.properties needs to contain the following
lines (where the paths have to match your system configuration and outgoing may
have to be replaced with incoming):

skip-accessibility-test-on-outgoing = true
outgoing-host-lastchanged-executable = /usr/bin/lastchanged
outgoing-host-rsync-executable = /usr/bin/rsync

Note that in the restricted environment the paths have to be specified explicitly as
automatic detection of paths will not work, and that the lastchanged executable
needs to be available on the remote host as the combo of bash, find, sort and
head will not work in this environment.

 Binaries for rssh
For some platforms (like Redhat Enterprise Linux 5), we provide binaries of rssh
on the Datamover download page. Note that these packages also contains the
lastchanged utility.

Hybrid rsync server / ssh tunneling mode
Ssh tunneling mode is easy to setup and in general a secure way to move data.
However, it requires all data that is moved to be encrypted and decrypted.
Depending on the size of the data sets you are moving and the CPU power of the
machines that may not be acceptable with regard to performance. For these cases,
a hybrid mode can be used where the bulk of the data is transferred using a remote
rsync server and only for some commands that need to be executed remotely the
ssh tunnel is used.

 Security consideration
Running an rsync server with writable rsync modules is not recommended in
an insecure network environment and is a particularly bad idea over the
internet. Use this feature with care and only when you really need it and know
what you are doing.

A simple rsync server setup
It is suggested that you first setup and test the ssh tunneling mode and then, when
this works, add the rsync configuration for the bulk transfers. For this to work, you
need to have setup an rsync server on the standard port (873) on the outgoing
machine that accepts connections from the machine running the Datamover. For
this to work you usually need to run the rsync as root. A simple approach (without
any authorization or host restriction, so be careful) is:

Datamover 15.06 (17)

rsyncd.conf

log file = /data/rsyncd.log

[datagrave]
 path = /data/stuff
 use chroot = true
 read only = false

The directory /data/stuff needs to exist and needs to be writable by user nobody.

Datamover setup without authorization
Add the rsync module name in the outgoing-target (or incoming-target)
between the server name and the directory on the server, separated by ':'. So you
replace e.g. (using the same directory as in the rsyncd.conf above):

outgoing-target = datahost:/data/stuff

by:

outgoing-target = datahost:datagrave:/data/stuff

Note that it is important that the directory (in the example /data/stuff) refers to
the same location on the filesystem of the server than the rsync module (which is
datagrave in the example given). Datamover cannot check that this is the case,
but if it isn't, you will find that Datamover will terminate all copy processes because
it won't see any write progress of the copied target on the server.

A rsync server setup with basic authorization
The rsync server can be configured to require a "secret" (or password) from the
client before allowing access to an rsync module. An extension of the rsyncd.conf
configuration file above which supports authorization reads:

rsyncd.conf with authorization

log file = /data/rsyncd.log

[datagrave]
 path = /data/stuff
 use chroot = true
 read only = false
 auth users = dmover1,dmover2
 secrets file = rsyncd.passwd

where dmover1 and dmover2 are accounts on the client side that should be allowed
access. The account name is determined by the operating system user that runs
Datamover. The file rsyncd.passwd must not be readable by any other user than
the one running the rsync server and is expected to contain lines like

dmover1:passwd

where passwd is the password in clear text.

Datamover 15.06 (18)

Datamover setup with authorization
Compared to the setup described in Datamover setup without authorization, there
is only one configuration change needed in order to use the Datamover with an
rsync server that requires a secret: provide that secret (in clear text) in a file
etc/rsync_incoming.passwd for the incoming target or
etc/rsync_outgoing.passwd for an outgoing target (both paths relative to the
Datamover application directory).

 The password file must not be readable by any other operating system user
than the user that is running Datamover. Otherwise rsync will refuse to use the
file and consequently authorization will fail.

Special features
Prefixing incoming data sets
The option prefix-for-incoming allows setting a prefix for all data sets that the
Datamover handles. The prefix is actually a prefix template in that the string %t will
be replaced with the current time stamp in format yyyyMMddHHmmss. The default
prefix set in the service.properties file is %t_.

This options serves two purposes:

1. Assume your measurement device from time to time can produce files or
directories with the same name (e.g. the same barcode), then prefixing it
with %t will make it unique.

2. You can have more than one Datamover running that points to the same
outgoing directory and still know from which Datamover the data have been
handled.

Monitoring Data Transfer
By default Datamover monitors data transfer by checking the last-changed time
stamp of the files to be copied on the target. If this time stamp is too old
Datamover assumes that the data transfer failed.

This can lead to a problem if the last-changed time stamp isn’t updated often
enough. Examples are reported for files >10GB to be moved to a mounted
SAMBA/CIFS disk.

In this case an alternative monitoring is possible by adding --progress in the list of
extra-rsync-params in service.properties.

Handshake (Data completion check)
The option data-completed-script allows to specify a script which determines if

Datamover 15.06 (19)

an item in incoming-target is complete and ready to be moved. The script is
executed after an incoming file or folder has not changed during the specified quiet
period (see quiet-period option). The script gets one or two arguments:

1. Path to the incoming file or folder. If no remote host is specified it will be the
absolute path, otherwise it may be a relative path, depending on what is
specified for incoming-target.

2. The remote host if incoming-target contains a host specification (i.e. if ssh
tunneling mode is used). Otherwise (incoming-target specifies a directory
without host), this argument will not be provided.

The exit value of the script determines whether the incoming data is complete
(exit_value = 0) or not (exit_value != 0). That is, the incoming data will not be
moved before the script returns 0. The script path is relative to the application
directory (i.e. the parent directory of etc). In datamover/bin/extras are little
example scripts (cmd_file_exists.bat for Windows and file_exists.sh for
Linux) which could do a minimal check on a Marker file.

With the option data-completed-script-timeout one can specify a time-out (in
seconds) for the data completed script. If the script does not finish before the time
out it will be killed (leading to a non-zero exit value).

If the data-competed-script script returns an exit_value != 0 for three times in
succession, an notification email will be sent out to the administrator, pointing out
the problem.

 Using a handshake can increase robustness of the system as it removes the
need for Datamover to "guess" when an incoming item is ready to be moved.

Local File Cleansing
Data cleansing describes the feature that the Local Processor removes certain files
before moving a path item to the buffer. The rationale behind this feature is that
sometimes you cannot prevent the data producer from creating certain files that
you don't need but that would eat up quite some time and network bandwidth when
moving the path entry to the central storage and thus you want to get rid of these
files before moving the directory that contains them to the remote side.

The files that should be deleted are specified as regular expression with the
cleansing-regex command line parameter. It is important to note that the regular
expression needs to match the complete basename (that is the file name part of
the path excluding the directory). Note also that cleansing does not delete
directories, not even empty ones.

Example: If you want to remove all files with extension .PNL or .STC, you can
specify as a regular expression: '.+(\.PNL|\.STC)'

Datamover 15.06 (20)

Manual Intervention Handling
There may be situations that require manual intervention and where this situation
should be already diagnosed on the Datamover host. A typical example of this
situation is when the barcode reader of a microscope was unable to read the
barcode of a screening plate. Then it may be important to keep the information
about the order of the plates so that the missing barcode can be constructed
afterwards from the order information.

Whenever the situation that requires manual intervention can be diagnosed by
inspecting the path name, the manual intervention handling feature of Datamover
can be used. It has two options, manual-intervention-dir and manual-
intervention-regex and works like this: whenever a processed path entry
matches the manual-intervention-regex, processing will be stopped and the
entry will be moved to manual-intervention-dir.

Note that since manual intervention detection is handled by the Local Processor
(and thus after the Mover of Incoming Data), there is a dependency between
prefixing incoming data sets and manual intervention handling: The manual-
intervention-regex needs to contain the prefix-for-incoming, where '%t' needs
to be replaced by '[0-9]{14}'.

Every handled path, whether it matches the manual-intervention-regex or not,
will be logged in log/manual_intervention.txt. The format of the file is
(assuming the manual-intervention-regex is '[0-9]{14}ttt.+'):

2007-10-15 18:58:12,600: DEFAULT /some/folder/buffer/copy-complete/20071015185807_normal_1 [created: 2007-
10-15 18:58:01]
2007-10-15 18:58:22,609: ATTENTION /some/folder/buffer/copy-complete/20071015185817_ttt_2 [created: 2007-
10-15 18:58:05]

Local Data Transformation
If you would like to transform the data on the buffer server before sending them to
the central storage (e.g. compress them to reduce the amount of data transferred
over the network), you can use an optional step of transformation. Specify the Java
class name (together with the list of packages this class belongs to) of an existing
transformator using transformator.class option. The class(es) required by the
specified transformation need to be in the classpath of the Datamover JVM. On
Unix, any JAR file put into the lib/ sub-directory will be picked up and put into the
classpath automatically by the startup script. On Windows, you have to add the JAR
file containing your transformation manually to datamover.bat.

Currently available transformators

Script Based Transformer

Executes any script. The class name is
ch.systemsx.cisd.datamover.transformation.CommandBasedTransformer. It
has the mandatory property command-template which should have at least one of
the following placeholders: ${absolute-file-path}, ${absolute-parent-path},

Datamover 15.06 (21)

${file-name}. Optional properties are replace-environment, a boolean property
which tells to remove existing environment variables (true) or not (false). Default
value is false. An optional property of the form env.<X> defines the environment
variable <X>.
Example:

...
transformator.class = ch.systemsx.cisd.datamover.transformation.CommandBasedTransformer
transformator.command-template = transformer.sh ${absolute-file-path} ${absolute-parent-path} ${file-name}
transformator.replace-environment = true
transformator.env.MY_HOST = http://192.168.59.103:2376
...

The script gets the file/folder to be transformed as an argument. It can modify it or
replace it. In the later case the script should remove the original file/folder.
Furthermore, it should do nothing if the file is already transformed. This is
necessary in order to avoid an endless loop because Datamover will invoke the
script again with the replaced file. A non-zero exit value returned by the script will
be handled as a normal error. That is, a notification e-mail will be sent and the file
path appears in <buffer-dir>/copy-complete/.faulty-paths.

Example: A compression script. It replaces the file/folder to be transformed by a zip
file with its original content. The script does nothing if the file is already a zip file.

#!/bin/sh
set -o errexit

ABSOLUTE_FILE_PATH="$1"
ABSOLUTE_PARENT_PATH="$2"
FILE_NAME="$3"

if ["${FILE_NAME##*.}" != "zip"]; then
 cd "$ABSOLUTE_PARENT_PATH"
 zip -r "${FILE_NAME}.zip" "$FILE_NAME"
 rm -rf "$FILE_NAME"
 cd -
fi

TIFF Compressor

Performs compression of TIFF images. By default it uses tiffcp command line tool
to compress images using LZW method. The command line tool needs to be in the
operating system path.

 There is additional requirement introduced to Datamover by recovery
mechanism of this transformator - all files inside incoming directory should be
grouped in directories. Putting a file directly into incoming directory will result in
an error and the file will not be moved to the outgoing directory.

To use this transformator, it is sufficient to specify the name of its class as
Datamover parameter:

transformator.class = ch.systemsx.cisd.datamover.transformation.TiffCompressorTransformator

Datamover 15.06 (22)

All additional parameters of this transformator are optional with a reasonable
default values that can be overridden in service.properties file like in this
example:

...

Optional feature: data transformation

The name of the class (together with the list of packages this class belongs to)
with implementation of file transformation that will be performed in the buffer.
transformator.class = ch.systemsx.cisd.datamover.transformation.TiffCompressorTransformator

Additional transformator properties:

#- number of threads performing compression per processor
* 1 - lowest (default),
* depending on machine bigger value may improve performance increasing usage of CPU and HDD
transformator.threads-per-processor = 2

#- compression command used by tiff compressor; possible values: TIFFCP (default), CONVERT
transformator.compression-command = CONVERT

#- compression type used by compression command;
* for TIFFCP used as '-c' option argument, e.g.: lzw:2 (default), zip
* for CONVERT used as '-compress' option argument, e.g.: LZW (default), Zip
transformator.compression-type = Zip
...

Extra local copy
If you need to access the raw data from the buffer server and you do not want to
transfer these data from the central storage, you can use the extra-copy-dir
option and specify a directory on the buffer server, where the copy will be created.
You can read the copy and delete it any time you wish. However you must not
modify the content of the copied files, because the procedure will use hard links to
save disk space, if the file system supports it)!

Obtaining status
The status of the running Datamover daemon can be obtained by invoking the
following command:

datamover.sh status

There is a variant of this command that is optimized for easy usage in scripts:

datamover.sh mstatus

It returns one of the following values:

• DOWN: Datamover is not running (exit value 3)
• STALE: Datamover is not running but there is still a stale .pid file (exit value

4)
• SHUTDOWN: Datamover is in the shutdown mode (invoked by datamover.sh
shutdown, see below) (exit value 2)

• IDLE: Datamover is running but does currently nothing (exit value 0)
• PROCESSING: Datamover is running and processes currently some files (exit

value 0)

Datamover 15.06 (23)

• ERROR: Datamover is running and (at least) one of the 3 pipelines has an
error (like e.g. the high water mark detection holding back moving data to
the final destination (exit value 1)

Obtaining outgoing target
With the following command the outgoing target of the running datamover instance
can be obtained:

datamover.sh target

This prints a value to standard output which can be used as a value for the option -
-outgoing-target. It has the following syntax:

[<host>:[<rsync_module>:]]<path>

Shutdown mode
The shutdown mode allows you to exit Datamover in a clean state. In this mode,
the program finishes all currently ongoing transfers and processings, but doesn't
start any new. When all transfer and processing operations are finished, Datamover
exits. This mode can be triggered by calling datamover.sh shutdown. Note that
Ctrl+C does not trigger the shutdown mode.

By calling datamover.sh stop you kill the Datamover process which promptly exits
without starting any cleaning step or/and waiting for processes to be finished.

Following rules applies to the shutdown mode:

• Not all data listed in the incoming directory will be processed while shutting
down, but only the one that is currently running at the time when shutdown
mode is triggered. Datamover tries to cleanly exit the incoming directory
processing as soon as possible.

• Once a incoming data has entered the pipeline, Datamover will not shutdown
before this data has reached its final destination, the outgoing directory.

Timeouts in checking for last modification time of incoming
target
If you get timeouts in checking the last modification time of an incoming target, i.e.
if you get messages like

WARN [Mover of Incoming Data] OPERATION.DirectoryScanningTimerTask - Failed to filter store items for
processing: filter 'StoreItemFilterBank' threw exception TimeoutException (message: "Call to method
'IFileStore.lastChanged(StoreItem,long)' timed out (timeout=180000ms).") on item 'XXX'

in your logs, try to increase the parameter check-interval, as the time for the
timeout is 3x the time of check-interval.

