org.knime.base.node.mine.decisiontree2.learner
Class PruningResult

java.lang.Object
  extended by org.knime.base.node.mine.decisiontree2.learner.PruningResult

public class PruningResult
extends Object

A pruning result is the possibly new node and a quality value (e.g. description length, estimated error) of this node.

Author:
Christoph Sieb, University of Konstanz

Constructor Summary
PruningResult(double qualityValue, DecisionTreeNode node)
          Creates a pruning result from a node and its quality value (e.g.
 
Method Summary
 DecisionTreeNode getNode()
          Returns the decision tree of this pruning result.
 double getQualityValue()
          Returns the quality value for this node.
 
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
 

Constructor Detail

PruningResult

public PruningResult(double qualityValue,
                     DecisionTreeNode node)
Creates a pruning result from a node and its quality value (e.g. description length, estimated error).

Parameters:
qualityValue - the quality value (e.g. description length, estimated error) of the node
node - the node of the pruning result
Method Detail

getQualityValue

public double getQualityValue()
Returns the quality value for this node.

Returns:
the quality value length for this node

getNode

public DecisionTreeNode getNode()
Returns the decision tree of this pruning result.

Returns:
the decision tree of this pruning result


Copyright, 2003 - 2010. All rights reserved.
University of Konstanz, Germany.
Chair for Bioinformatics and Information Mining, Prof. Dr. Michael R. Berthold.
You may not modify, publish, transmit, transfer or sell, reproduce, create derivative works from, distribute, perform, display, or in any way exploit any of the content, in whole or in part, except as otherwise expressly permitted in writing by the copyright owner or as specified in the license file distributed with this product.