|
||||||||||
PREV NEXT | FRAMES NO FRAMES |
Packages that use BasisFunctionLearnerRow | |
---|---|
org.knime.base.node.mine.bfn | Contains abstract and util classes to train and perform prediction to rule models, also called BasisFunction models. |
org.knime.base.node.mine.bfn.fuzzy | Contains the learner and predictor to train fuzzy rules and apply them to unknown data. |
org.knime.base.node.mine.bfn.radial | Contains the PNN learner and predictor. |
Uses of BasisFunctionLearnerRow in org.knime.base.node.mine.bfn |
---|
Methods in org.knime.base.node.mine.bfn that return BasisFunctionLearnerRow | |
---|---|
abstract BasisFunctionLearnerRow |
BasisFunctionFactory.commit(RowKey key,
DataCell classInfo,
DataRow row)
Returns a new row initialised by a DataRow as its initial center vector and a class
label. |
BasisFunctionLearnerRow |
BasisFunctionIterator.nextBasisFunction()
Returns the next row in the iteration. |
Methods in org.knime.base.node.mine.bfn that return types with arguments of type BasisFunctionLearnerRow | |
---|---|
Map<DataCell,List<BasisFunctionLearnerRow>> |
BasisFunctionLearnerTable.getBasisFunctions()
Returns the map of basis functions list for each class. |
Methods in org.knime.base.node.mine.bfn with parameters of type BasisFunctionLearnerRow | |
---|---|
void |
BasisFunctionLearnerTable.addBasisFunction(BasisFunctionLearnerRow bf)
Adds the given basis function to the list using its nominal value for class assignment. |
abstract boolean |
BasisFunctionLearnerRow.compareCoverage(BasisFunctionLearnerRow o,
DataRow r)
Compares coverage of this and another row. |
double |
BasisFunctionLearnerRow.computeCoverage(BasisFunctionLearnerRow bf)
Computes the intersection of instances covered by this and the other basisfunction - its fraction to the total number of instances is returned. |
void |
BasisFunctionLearnerTable.removeBasisFunction(BasisFunctionLearnerRow bf)
Removes the given basisfunction from the model and updates all internal members. |
Constructor parameters in org.knime.base.node.mine.bfn with type arguments of type BasisFunctionLearnerRow | |
---|---|
BasisFunctionModelContent(DataTableSpec spec,
Map<DataCell,List<BasisFunctionLearnerRow>> bfs)
Creates a new basis function model object. |
Uses of BasisFunctionLearnerRow in org.knime.base.node.mine.bfn.fuzzy |
---|
Subclasses of BasisFunctionLearnerRow in org.knime.base.node.mine.bfn.fuzzy | |
---|---|
class |
FuzzyBasisFunctionLearnerRow
Extends the general BasisFunctionLearnerRow object to act as
rectangular fuzzy prototype. |
Methods in org.knime.base.node.mine.bfn.fuzzy that return BasisFunctionLearnerRow | |
---|---|
BasisFunctionLearnerRow |
FuzzyBasisFunctionFactory.commit(RowKey key,
DataCell classInfo,
DataRow row)
Creates and returns a new row initialised with a class label and a center vector. |
Methods in org.knime.base.node.mine.bfn.fuzzy with parameters of type BasisFunctionLearnerRow | |
---|---|
boolean |
FuzzyBasisFunctionLearnerRow.compareCoverage(BasisFunctionLearnerRow o,
DataRow r)
Compares this basisfunction with the another one by the fuzzy rule's number of covered pattern. |
Uses of BasisFunctionLearnerRow in org.knime.base.node.mine.bfn.radial |
---|
Subclasses of BasisFunctionLearnerRow in org.knime.base.node.mine.bfn.radial | |
---|---|
class |
RadialBasisFunctionLearnerRow
This class extends the general BasisFunctionLearnerRow in order to
use radial basis function prototypes for training. |
Methods in org.knime.base.node.mine.bfn.radial that return BasisFunctionLearnerRow | |
---|---|
BasisFunctionLearnerRow |
RadialBasisFunctionFactory.commit(RowKey key,
DataCell classInfo,
DataRow row)
Creates and returns a new RadialBasisFunctionLearnerRow
initialized with a center vector and a class label. |
Methods in org.knime.base.node.mine.bfn.radial with parameters of type BasisFunctionLearnerRow | |
---|---|
boolean |
RadialBasisFunctionLearnerRow.compareCoverage(BasisFunctionLearnerRow best,
DataRow row)
Compares this basis function with the other one by its standard deviation if the number of covered pattern is equal otherwise use this identification. |
|
||||||||||
PREV NEXT | FRAMES NO FRAMES |