org.knime.base.node.mine.decisiontree2.learner
Class SplitNominal
java.lang.Object
org.knime.base.node.mine.decisiontree2.learner.Split
org.knime.base.node.mine.decisiontree2.learner.SplitNominal
- Direct Known Subclasses:
- SplitNominalBinary, SplitNominalNormal
public abstract class SplitNominal
- extends Split
Super class for all nominal split variants.
- Author:
- Christoph Sieb, University of Konstanz
Methods inherited from class org.knime.base.node.mine.decisiontree2.learner.Split |
canBeFurtherUsed, getAttributeIndex, getBestQualityMeasure, getNumberPartitions, getPartitionForRow, getPartitionWeights, getQualityMeasureName, getSplitAttributeName, getTable, isValidSplit, setBestQualityMeasure, toString |
SplitNominal
public SplitNominal(InMemoryTable table,
int attributeIndex,
SplitQualityMeasure splitQualityMeasure)
- Constructs the best split for the given attribute list and the class
distribution. The results can be retrieved from getter methods. This is a
nominal split.
- Parameters:
table
- the table for which to create the splitattributeIndex
- the index specifying the attribute for which to
calculate the splitsplitQualityMeasure
- the quality measure to determine the best
split (e.g. gini or gain ratio)
getSplitValues
public DataCell[] getSplitValues()
- Returns the possible values of this splits attribute. Those values are
used for the split criteria.
- Returns:
- the possible values of this splits attribute
Copyright, 2003 - 2010. All rights reserved.
University of Konstanz, Germany.
Chair for Bioinformatics and Information Mining, Prof. Dr. Michael R. Berthold.
You may not modify, publish, transmit, transfer or sell, reproduce, create derivative works from, distribute, perform, display,
or in any way exploit any of the content, in whole or in part, except as otherwise expressly permitted in writing by the
copyright owner or as specified in the license file distributed with this product.