Uses of Interface
org.knime.base.node.mine.bfn.BasisFunctionLearnerTable.MissingValueReplacementFunction

Packages that use BasisFunctionLearnerTable.MissingValueReplacementFunction
org.knime.base.node.mine.bfn Contains abstract and util classes to train and perform prediction to rule models, also called BasisFunction models. 
 

Uses of BasisFunctionLearnerTable.MissingValueReplacementFunction in org.knime.base.node.mine.bfn
 

Classes in org.knime.base.node.mine.bfn that implement BasisFunctionLearnerTable.MissingValueReplacementFunction
(package private)  class BestGuessMissingValueReplacementFunction
          "Best Guess" replacement which searches for the best value in the model or just takes the mean if not available.
(package private)  class IncorpMissingValueReplacementFunction
          Makes use the missing value by using it inside the model.
(package private)  class MaximumMissingValueReplacementFunction
          Maximum replacement.
(package private)  class MeanMissingValueReplacementFunction
          Mean replacement.
(package private)  class MinimumMissingValueReplacementFunction
          Minimum replacement.
(package private)  class OneMissingValueReplacementFunction
          One replacement.
(package private)  class ZeroMissingValueReplacementFunction
          Zero replacement.
 

Fields in org.knime.base.node.mine.bfn declared as BasisFunctionLearnerTable.MissingValueReplacementFunction
static BasisFunctionLearnerTable.MissingValueReplacementFunction[] BasisFunctionLearnerTable.MISSINGS
          A list of possible missing value replacements.
 

Methods in org.knime.base.node.mine.bfn that return BasisFunctionLearnerTable.MissingValueReplacementFunction
 BasisFunctionLearnerTable.MissingValueReplacementFunction BasisFunctionLearnerNodeModel.getMissingFct()
           
 

Constructors in org.knime.base.node.mine.bfn with parameters of type BasisFunctionLearnerTable.MissingValueReplacementFunction
BasisFunctionFilterRow(BasisFunctionLearnerTable model, DataRow row, int[] dataColumns, int[] classColumns, String[] classColumnNames, BasisFunctionLearnerTable.MissingValueReplacementFunction missing)
          Create new basisfunction input data row with data and class columns.
BasisFunctionLearnerTable(BufferedDataTable data, String[] dataColumns, String[] targetColumns, BasisFunctionFactory factory, BasisFunctionLearnerTable.MissingValueReplacementFunction missing, boolean shrinkAfterCommit, boolean maxClassCoverage, int maxEpochs, ExecutionMonitor exec)
          Creates a new basis function learner and starts the training algorithm.
BasisFunctionLearnerTable(BufferedDataTable data, String[] dataColumns, String[] targetColumns, BasisFunctionFactory factory, BasisFunctionLearnerTable.MissingValueReplacementFunction missing, boolean shrinkAfterCommit, boolean maxClassCoverage, int maxEpochs, int[] startRuleCount, ExecutionMonitor exec)
          Creates a new basisfunction learner and starts the training algorithm.
 



Copyright, 2003 - 2010. All rights reserved.
University of Konstanz, Germany.
Chair for Bioinformatics and Information Mining, Prof. Dr. Michael R. Berthold.
You may not modify, publish, transmit, transfer or sell, reproduce, create derivative works from, distribute, perform, display, or in any way exploit any of the content, in whole or in part, except as otherwise expressly permitted in writing by the copyright owner or as specified in the license file distributed with this product.