Uses of Class
org.knime.base.node.mine.bfn.fuzzy.membership.MembershipFunction

Packages that use MembershipFunction
org.knime.base.node.mine.bfn.fuzzy Contains the learner and predictor to train fuzzy rules and apply them to unknown data. 
org.knime.base.node.mine.bfn.fuzzy.membership Membership function package which are used during training of BasisFunction models. 
org.knime.base.node.mine.bfn.fuzzy.shrink A number of shrink heuristics. 
 

Uses of MembershipFunction in org.knime.base.node.mine.bfn.fuzzy
 

Methods in org.knime.base.node.mine.bfn.fuzzy that return MembershipFunction
 MembershipFunction FuzzyBasisFunctionPredictorRow.getMemship(int i)
          Returns the membership for one dimension.
 MembershipFunction[] FuzzyBasisFunctionPredictorRow.getMemships()
           
 

Constructors in org.knime.base.node.mine.bfn.fuzzy with parameters of type MembershipFunction
FuzzyBasisFunctionPredictorRow(RowKey key, DataCell classLabel, MembershipFunction[] mem, int norm)
          Creates a new predictor as fuzzy rule.
 

Uses of MembershipFunction in org.knime.base.node.mine.bfn.fuzzy.membership
 

Subclasses of MembershipFunction in org.knime.base.node.mine.bfn.fuzzy.membership
 class TrapezoidMembershipFunction
          Trapezoid membership function with four values for support and core left and right values whereby the support region can be defined infinity.
 class TriangleMembershipFunction
          Triangle membership function with three values core/anchor and support-left and -right whereby the support region can be defined infinity at the beginning.
 

Uses of MembershipFunction in org.knime.base.node.mine.bfn.fuzzy.shrink
 

Methods in org.knime.base.node.mine.bfn.fuzzy.shrink with parameters of type MembershipFunction
 double VolumeAnchorBasedShrink.leftCoreLoss(double value, MembershipFunction mem)
          leftCoreLoss(.).
 double VolumeBorderBasedShrink.leftCoreLoss(double value, MembershipFunction mem)
          leftCoreLoss(.).
 double VolumeRuleBasedShrink.leftCoreLoss(double value, MembershipFunction mem)
           
 double Shrink.leftCoreLoss(double value, MembershipFunction mem)
          leftCoreLoss(.).
 double VolumeAnchorBasedShrink.leftSuppLoss(double value, MembershipFunction mem)
           
 double VolumeBorderBasedShrink.leftSuppLoss(double value, MembershipFunction mem)
          leftSuppLoss(.).
 double VolumeRuleBasedShrink.leftSuppLoss(double value, MembershipFunction mem)
           
 double Shrink.leftSuppLoss(double value, MembershipFunction mem)
          leftSuppLoss(.).
 double VolumeAnchorBasedShrink.rightCoreLoss(double value, MembershipFunction mem)
          rightCoreLoss(.).
 double VolumeBorderBasedShrink.rightCoreLoss(double value, MembershipFunction mem)
          rightCoreLoss(.).
 double VolumeRuleBasedShrink.rightCoreLoss(double value, MembershipFunction mem)
          rightCoreLoss(.).
 double Shrink.rightCoreLoss(double value, MembershipFunction mem)
          rightCoreLoss(.).
 double VolumeAnchorBasedShrink.rightSuppLoss(double value, MembershipFunction mem)
          rightSuppLoss(.).
 double VolumeBorderBasedShrink.rightSuppLoss(double value, MembershipFunction mem)
          rightSuppLoss(.).
 double VolumeRuleBasedShrink.rightSuppLoss(double value, MembershipFunction mem)
           
 double Shrink.rightSuppLoss(double value, MembershipFunction mem)
          rightSuppLoss(.).
 



Copyright, 2003 - 2010. All rights reserved.
University of Konstanz, Germany.
Chair for Bioinformatics and Information Mining, Prof. Dr. Michael R. Berthold.
You may not modify, publish, transmit, transfer or sell, reproduce, create derivative works from, distribute, perform, display, or in any way exploit any of the content, in whole or in part, except as otherwise expressly permitted in writing by the copyright owner or as specified in the license file distributed with this product.