|
||||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |
java.lang.Objectorg.knime.base.node.mine.decisiontree2.learner.Split
org.knime.base.node.mine.decisiontree2.learner.SplitNominal
org.knime.base.node.mine.decisiontree2.learner.SplitNominalNormal
public class SplitNominalNormal
This class determines the best split for a nominal attribute. The split is performed by creating one partition for each nominal value, i.e. the branching degree of the tree.
Field Summary |
---|
Fields inherited from class org.knime.base.node.mine.decisiontree2.learner.Split |
---|
m_splitQualityMeasure |
Constructor Summary | |
---|---|
SplitNominalNormal(InMemoryTable table,
int attributeIndex,
SplitQualityMeasure splitQualityMeasure,
double minObjectsCount)
Constructs the best split for the given nominal attribute. |
Method Summary | |
---|---|
boolean |
canBeFurtherUsed()
For normal nominal splits it makes no sense to be used in deeper levels. |
int |
getNumberPartitions()
The number of partitions of a normal nominal split corresponds to the number of different nominal values of the attribute. |
int |
getPartitionForRow(DataRowWeighted row)
Returns the partition the given row belongs to according to this split. |
double[] |
getPartitionWeights()
Returns the partition weights. |
Methods inherited from class org.knime.base.node.mine.decisiontree2.learner.SplitNominal |
---|
getSplitValues |
Methods inherited from class org.knime.base.node.mine.decisiontree2.learner.Split |
---|
getAttributeIndex, getBestQualityMeasure, getQualityMeasureName, getSplitAttributeName, getTable, isValidSplit, setBestQualityMeasure, toString |
Methods inherited from class java.lang.Object |
---|
clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait |
Constructor Detail |
---|
public SplitNominalNormal(InMemoryTable table, int attributeIndex, SplitQualityMeasure splitQualityMeasure, double minObjectsCount)
table
- the attribute list for which to create the splitattributeIndex
- the index of the attribute for which to calculate
the splitsplitQualityMeasure
- the split quality measure (e.g. gini or gain
ratio)minObjectsCount
- the minimumn number of objects in at least two
partitionsMethod Detail |
---|
public int getNumberPartitions()
getNumberPartitions
in class Split
public boolean canBeFurtherUsed()
canBeFurtherUsed
in class Split
public int getPartitionForRow(DataRowWeighted row)
getPartitionForRow
in class Split
row
- the row for which to get the partition index
public double[] getPartitionWeights()
getPartitionWeights
in class Split
|
||||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |