Uses of Class
org.knime.base.node.mine.decisiontree2.learner.SplitQualityMeasure

Packages that use SplitQualityMeasure
org.knime.base.node.mine.decisiontree2.learner   
 

Uses of SplitQualityMeasure in org.knime.base.node.mine.decisiontree2.learner
 

Subclasses of SplitQualityMeasure in org.knime.base.node.mine.decisiontree2.learner
 class SplitQualityGainRatio
          Implements the gain ratio split quality measure.
 class SplitQualityGini
          Implements the gini index split quality measure.
 

Fields in org.knime.base.node.mine.decisiontree2.learner declared as SplitQualityMeasure
protected  SplitQualityMeasure Split.m_splitQualityMeasure
          The quality measure to be used for the best split point calculation.
 

Constructors in org.knime.base.node.mine.decisiontree2.learner with parameters of type SplitQualityMeasure
Split(InMemoryTable table, int attributeIndex, SplitQualityMeasure splitQualityMeasure)
          Constructs the best split for the given attribute list and the class distribution.
SplitContinuous(InMemoryTable table, int attributeIndex, SplitQualityMeasure splitQualityMeasure, boolean averageSplitpoint, double minObjectsCount)
          Constructs the best split for the given numeric attribute list and the class distribution.
SplitFinder(InMemoryTable table, SplitQualityMeasure splitQualityMeasure, boolean averageSplitpoint, double minObjectsCount, boolean binaryNominalSplits, int maxNumNominalsForCompleteComputation)
          Finds the best split for the given data.
SplitNominal(InMemoryTable table, int attributeIndex, SplitQualityMeasure splitQualityMeasure)
          Constructs the best split for the given attribute list and the class distribution.
SplitNominalBinary(InMemoryTable table, int attributeIndex, SplitQualityMeasure splitQualityMeasure, double minObjectsCount, int maxNumDifferentValues)
          Constructs the best split for the given nominal attribute.
SplitNominalNormal(InMemoryTable table, int attributeIndex, SplitQualityMeasure splitQualityMeasure, double minObjectsCount)
          Constructs the best split for the given nominal attribute.
 



Copyright, 2003 - 2010. All rights reserved.
University of Konstanz, Germany.
Chair for Bioinformatics and Information Mining, Prof. Dr. Michael R. Berthold.
You may not modify, publish, transmit, transfer or sell, reproduce, create derivative works from, distribute, perform, display, or in any way exploit any of the content, in whole or in part, except as otherwise expressly permitted in writing by the copyright owner or as specified in the license file distributed with this product.